11.3 Exceptions to Mendel's rules

- Incomplete Dominance
- Codominance
- Multiple Alleles
- Polygenic Traits

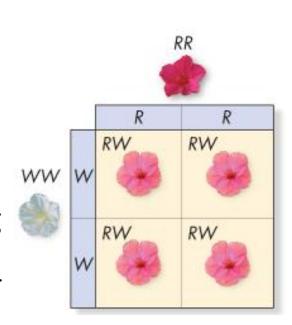
Incomplete Dominance

- Incomplete dominance = one allele is not completely dominant over another
 - Phenotype is a combination of the two alleles

EXAMPLE: Four o'clock flowers

R = Red

W = White


What are the genotypes of the following?

Red RR White Pink Pink

What are the phenotypes of the following

RR Red RW Pink WW White

Cross a white flower with a red flower

- Codominance = both alleles are seen in phenotype
 - The phenotype shows each allele N
 Example Some varieties of chickens

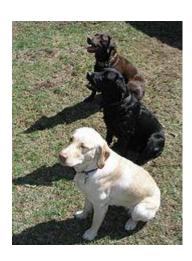
W = White

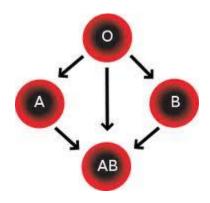
B = Black

WW = White BB = Black BW = Black AND White

What is the phenotypic ratio when you cross two DIM

chickens?????


1 Black: 2 Black and White: 1 White


BB BW BW WW

Multiple Alleles

- Multiple alleles = there are more than 2 alleles for a trait
 - Example rabbit's fur color, human blood types

Disorders caused by individual genes – codominant and multiple alleles

- ABO Blood Types
 - A (I^A) and B (I^B) are codominant
 - O (i) is recessive

	mother			
father	Α	В	0	
A	AA	AB	AO	
В	ВА	ВВ	во	
o	OA	ОВ	00	

alleles	ţ	olood type
A+A	=	Α
A+O	=	Α
A+B	=	AB
B+B	=	В
B+O	=	В
0+0	=	0

Blood Groups				
Phenotype (Blood Type)	Genotype			nsfusions From
Α	I ^A I ^A or I ^A i	Α	A, AB	A, O
В	I ^B I ^B or I ^B i	В	B, AB	В, О
AB	I ^A I ^B	A and B	AB	A, B, AB,
0	ii	None	A, B, AB,	0

Blood Typing

Blood type		Antibodies made by body	Reaction to added antibodies	
of cells Genotype	Anti-A		Anti-B	
A	$I^{\scriptscriptstyle A}I^{\scriptscriptstyle A}$ or $I^{\scriptscriptstyle A}i^{\scriptscriptstyle O}$	Anti-B	***	
В	I ^B I ^B or I ^B i ^O	Anti-A		
AB	I^AI^B	Neither anti-A nor anti-B	9-8-1	
0	i°i°	Both anti-A and anti-B		

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 16.14 ABO Blood Reactions Are Important in Transhusions

© 2004 Strauer Associates, Inc., and W.H. Freeman & Co.

	Group A	Group B	Group AB	Group O
Red blood cell type	A	В	AB	
Antibodies in Plasma	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	P A antigen	† B antigen	P† A and B antigens	None

Polygenic Traits

- Polygenic trait = traits produced by more than one gene
 - Examples human skin color and height

Epistasis

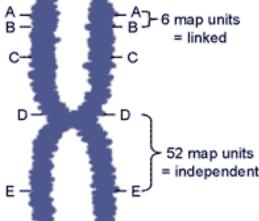
Epistasis

- Two or more gene products influence a trait
- Typically, one gene product suppresses the effect of another

- Example: Coat color in dogs
 - Alleles B and b designate colors (black or brown)
 - Two recessive alleles ee suppress color

Epistasis in Coat Colors

	(EB)	(Eb)	(eB)	(eb)
(EB)	EEBB	EEBb	EeBB	EeBb
	black	black	black	black
(Eb)	EEBb	EEbb	EeBb	Eebb
	black	chocolate	black	chocolate
(eB)	EeBB	EeBb	eeBB	eeBb
	black	black	<mark>yellow</mark>	<mark>yellow</mark>
(eb)	EeBb	Eebb	eeBb	eebb
	black	chocolate	<mark>yellow</mark>	<mark>yellow</mark>

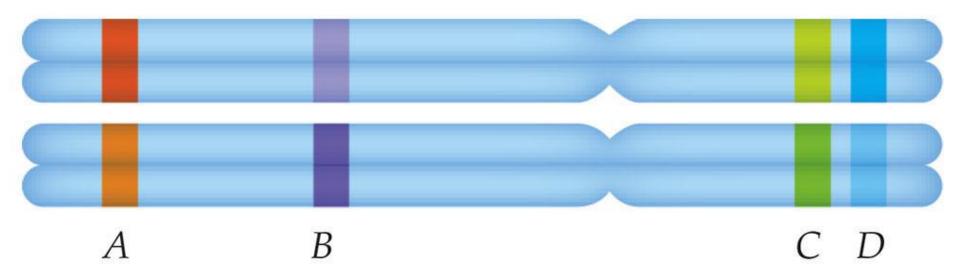

11.5 Linkage Groups

 The farther apart two genes are on a chromosome, the more often crossing over occurs between them

Linkage group

All genes on one chromosome

 Linked genes are very close together; crossing over rarely occurs between them



Linkage and Crossing Over

Parental ACacgeneration F₁ offspring All AaCc meiosis, gamete formation Gametes Most gametes have A smaller number have parental genotypes recombinant genotypes

The Distance Between Genes

 The probability that a crossover event will separate alleles of two genes is proportional to the distance between those genes

@ Brooks/Cole, Cengage Learning

Genes and the Environment

 Genes provide a plan for development, but environment also plays a role in phenotype

