

CHAPTER 11 GENETICS

Genetic discoveries 45 minutes

Impacts, Issues: The Color of Skin

- Like most human traits, skin color has a genetic basis; more than 100 gene products affect the synthesis and deposition of melanins
 - In the picture of fraternal twins. , both grandmas were European descent and both grandfathers are African

11.1 Mendel, Pea Plants, and Inheritance Patterns

 Recurring inheritance patterns are observable outcomes of sexual reproduction

- Before the discovery of genes, it was thought that inherited traits resulted from a blend of parental characters
- Mendel was a monk with training in plant breeding and mathematics

11.1 The work of Gregor Mendel

- Genetics = the study of heredity (passing down of characteristics from parent to offspring)
- □ Gregor Mendel = "the father of genetics"
 - Born in 1822 Austrian monk
 - Worked with pea plants that were self-pollinating and true-breeding (the offspring always looked like the parent)

Important Genetic Terms

- Trait = a specific characteristic (pea color, hair color)
- Gene = the factors that are passed from parent to offspring (found at a locus on a chromosome)
- □ Allele = the different forms of a gene

Terms Used in Modern Genetics

- A mutation is a permanent change in a gene
 May cause a trait to change
- A hybrid has nonidentical alleles for a trait
 Offspring of a cross between two individuals that breed true for different forms of a trait are hybrids

Mendel's Conclusions

- An individual's characteristics are determined by factors (genes) that are passed from one parental generation to the next
- Principle of dominance = some alleles are dominant and some are recessive
 - Dominant = need one allele (form of the gene) for the trait to be expressed
 - Recessive = need two alleles for the trait to be expressed

Genetics and probability

- Dominant alleles are written in upper case T = tall
- Recessive alleles are written in lower case t = short
- □ In this example:
 - There is a 50% chance that the plant the offspring will get a "T" allele
 - There is a 50% chance the plant will get a "t" allele

Even more genetic terminology

- Genotype = the genetic makeup of an organism
 - Homozygous = organisms that have two identical alleles for a gene (BB or bb)
 - Heterozygous = organisms that have two different alleles for a gene (Bb)
- Phenotype = the physical appearance of an organism

Mendel's Pea Plants

Mendel cross pollinated his true-breeding plants

Mendel's Seven F ₁ Crosses on Pea Plants							
	Seed Shape	Seed Color	Seed Coat	Pod Shape	Pod Color	Flower Position	Plant Height
Ρ	© Round X ⊘ Wrinkled	Yellow X Green	Gray X White	Smooth X Constricted	Green	Axial X Terminal	Tall X Short
F,	↓ © Round	↓ Yellow	↓ Oray	↓ Smooth	↓ Green	Axial	Tall

Mendel's Monohybrid Experiments

© Brooks/Cole, Cengage Learning

Phenotype Ratios in a Monohybrid Experiment

B A cross between two plants that breed true for different forms of a trait produces F_1 offspring that are identically heterozygous.

Brooks/Cole, Cengage Learning

Phenotype Ratios in a Monohybrid Experiment

C A cross between the F_1 offspring is the monohybrid experiment. The phenotype ratio of F_2 offspring in this example is 3:1 (3 purple to 1 white). ^{© Brooks/Cole, Cengage Learning}

Segregation of Alleles at a Gene Locus

Mendel's Law of Segregation

- Mendel observed a phenotype ratio of 3:1 in the F₂ offspring of his monohybrid crosses
 - Consistent with the probability of the aa genotype in the offspring of a heterozygous cross (Aa x Aa)
- This is the basis of Mendel's law of segregation
 - Diploid cells have pairs of genes on pairs of homologous chromosomes
 - The two genes of each pair separate during meiosis, and end up in different gametes

Testcrosses

Testcross

- A method of determining if an individual is heterozygous or homozygous dominant
- An individual with unknown genotype is crossed with one that is homozygous recessive (AA x aa) or (Aa x aa)

Applying Mendel's Principles

Mendelian genetics is based on probability = the likelihood that an event would occur

Punnett Squares

Punnett squares = a diagram that uses probability to predict the possible genotype and phenotype combination in crosses

- T = tall
- t = small

(choose a letter from the dominant allele)

Oh no! You need to think!!!!

- For each example, write the genotype and phenotype.
- 1) The Rr flower
- Genotype <u>**Rr</u></u></u>**
- Phenotype___ Purple
- 2) The rr flower
- Genotype ____r
- Phenotype ______white

Monohybrid cross

In peas, yellow seeds are dominant to green. Complete the following cross Yy x yy 1) Make a key – yellow = <u>Y</u> green = <u>Y</u>

2) Parental genotypes – if not given yy x Yy

3) Set up the Punnett square

4) Figure out the phenotypic and genotypic ratio Phenotypic ratio - 1 yellow : 1 green

Genotypic ratio - 1 Yy : 1 yy

Y

11.3 Mendel's Law of Independent Assortment

Mendel's law of independent assortment

Many genes are sorted into gametes independently of other

@ Brooks/Cole, Cengage Learning

- When there are 2 traits it is a dihybrid cross.
- Genes for different traits can segregate independently during the formation of gametes

Dihybrid cross

□ EXAMPLE PROBLEM

Cross two plants that are heterozygous for height and pod color. Tall is dominant to short and green pods are dominant to yellow

Step 1 – Make a key and determine the parentsTall = TGreen = G

Short = t Yellow = g

Step 2 – Write the genotypes of the parents

TtGg x TtGg

Dihybrid cross

Step 3 – Determine the possible allele combinations

for the gametes

Step 4 – Set up the 16 square Punnett square

Dihybrid cross example

Step 5 – Complete the Punnett square

Step 6 – Determine the phenotypic ratio

9 tall green: 3 tall yellow: 3 short green: 1 short yellow

@ Brooks/Cole, Cengage Learning

 \mathbf{F}_1 generation

All F₁ offspring are AaBb, with purple flowers and tall stems.

C Meiosis in AaBb dihybrid plants results in four kinds of gametes:

 F_2 generation

These gametes can meet up in one of 16 possible wayswhen the dihybrids are crossed (AaBb X AaBb):

D Out of 16 possible genetic outcomes of this dihybrid cross, 9 will result in plants that are purple-flowered and tall; 3, purple-flowered and short; 3, white-flowered and tall; and 1, white-flowered and short. The ratio of phenotypes of this dihybrid cross is 9:3:3:1.

© Brooks/Cole, Cengage Learning

Mendel's Law of Independent Assortment

Mendel's dihybrid experiments showed that "units" specifying one trait segregated into gametes separately from "units" for other traits

Exception: Genes that have loci very close to one another on a chromosome tend to stay together during meiosis

- In moose, brown coat color (B) is dominant to albino (no pigment) (b) and rough coat (R) is dominant to smooth coat (r). A homozygous brown, homozygous rough male mates with a albino, smooth female.
- Draw Punnett squares and determine the expected phenotypic ratios for the:
 - **a)** F1 generation
 - **b)** F2 generation
 - c) cross between an F1 moose and a moose with the genotype BBRr

- **a**) F1 generation = 100% BbRr = 100% Brown, rough
- **b**) F2 generation =
- 9 brown rough: 3 brown smooth: 3 albino rough: 1 albino smooth
- c) cross between an F1 moose and a moose with the genotype BBRr
 - = BBRr x BbRr = 3 Brown rough: 1 brown smooth