Section P.1 Algebraic Expressions, Mathematical Models, and Real Numbers

It costs how much?

You are looking ahead to the next school year and wondering how much money you will need.

Is there any way that you can use trends for college costs over the past few years to predict how much college will cost next year?

In the Exercise Set for this section, you will use a model that will allow you to project average costs at private U.S. colleges in the near future.

	Objective #3: Find the intersection of two sets.			
	✓ Solved Problem #3		🔪 Pencil Problem #3 🖉	
3.	Find the intersection: $\{3, 4, 5, 6, 7\} \cap \{3, 7, 8, 9\}$.	3.	Find the intersection: $\{1, 2, 3, 4\} \cap \{2, 4, 5\}$.	
	The elements common to $\{3, 4, 5, 6, 7\}$ and $\{3, 7, 8, 9\}$ are 3 and 7.			
	$\{3, 4, 5, 6, 7\} \cap \{3, 7, 8, 9\} = \{3, 7\}$			
	Objective #4: Find t	he u	nion of two sets.	
	✓ Solved Problem #4		🔪 Pencil Problem #4 🎤	
4.	Find the union: $\{3, 4, 5, 6, 7\} \cup \{3, 7, 8, 9\}$.	4.	Find the union: $\{1, 2, 3, 4\} \cup \{2, 4, 5\}$.	
	List the elements from the first set: 3, 4, 5, 6, and 7. Now list any elements from the second set not in the first: 8 and 9.			
	$\{3, 4, 5, 6, 7\} \cup \{3, 7, 8, 9\} = \{3, 4, 5, 6, 7, 8, 9\}$			
	Objective #5: Recognize s	ubse	ets of the real numbers	
	Solved Problem #5		🔪 Pencil Problem #5 🎢	
5.	Consider the following set of numbers:	5.	Consider the following set of numbers:	
	$\left\{-9,-1.3,0,0.\overline{3},\frac{\pi}{2},\sqrt{9},\sqrt{10}\right\}.$		$\left\{-11, -\frac{5}{6}, 0, 0.75, \sqrt{5}, \pi, \sqrt{64}\right\}.$	
5a.	List the natural numbers.	5a.	List the natural numbers.	
	The natural numbers are used for counting. The only natural number is $\sqrt{9}$ because $\sqrt{9} = 3$.			
5b.	List the rational numbers.	5b.	List the rational numbers.	
	All numbers that can be expressed as quotients of			
	integers are rational numbers: $-9\left(-9 = \frac{-9}{1}\right)$,			
	$0\left(0=\frac{0}{1}\right)$, and $\sqrt{9}\left(\sqrt{9}=\frac{3}{1}\right)$. All numbers that are			
	terminating or repeating decimals are rational numbers: -1.3 and $0.\overline{3}$.			

	Objective #6: Use inequality symbols.			
	✓ Solved Problem #6		Nencil Problem #6	
6.	Indicate whether each statement is true or false.	6.	Indicate whether each statement is true or false.	
6a.	-8 > -3	6a.	-7 < -2	
	This statement is false. Because -8 lies to the left of -3 on a number line, -8 is less than -3 . So, $-8 < -3$.			
6b.	$9 \le 9$	6b.	$-5 \ge 2$	
	This statement is true because $9 = 9$.			
	Objective #7: Eval	uate	absolute value.	
	✓ Solved Problem #7		🔪 Pencil Problem #7 🌶	
7.	Rewrite each expression without absolute value bars.	7.	Rewrite each expression without absolute value bars.	
7a.	$\left 1-\sqrt{2}\right $	7a.	$ 12 - \pi $	
	Because $\sqrt{2} \approx 1.4$, the number $1 - \sqrt{2}$ is negative. Thus, $\left 1 - \sqrt{2}\right = -(1 - \sqrt{2}) = \sqrt{2} - 1$.			
7b.	$ \pi-3 $	7b.	$\left \sqrt{2}-5\right $	
	Because $\pi \approx 3.14$, the number $\pi - 3$ is positive. Thus, $ \pi - 3 = \pi - 3$.			
7c.	$\frac{ x }{x} \text{if } x > 0$	7c.	$\frac{-3}{\left -3\right }$	
	If $x > 0$, then $ x = x$. Thus, $\frac{ x }{x} = \frac{x}{x} = 1$.			
	Objective #8: Use absolute	e va	lue to express distance.	
<u> </u>	Solved Problem #8		Pencil Problem #8	
8.	Find the distance between -4 and 5 on the real number line.	8.	Find the distance between -19 and -4 on the real number line.	
	-4-5 = -9 = 9			

Objective #9: Identify properties of the real numbers.		
✓ Solved Problem #9	🕅 Pencil Problem #9 🖉	
9. State the name of the property illustrated.	9. State the name of the property illustrated.	
9a. $2 + \sqrt{5} = \sqrt{5} + 2$	9a. $6+(2+7)=(6+2)+7$	
The order of the numbers in the addition has changed. This illustrates the commutative property of addition.		
9b. $1 \cdot (x+3) = x+3$	9b. $2(-8+6) = -16+12$	
One has been deleted from a product. This illustrates the identity property of multiplication.		
Objective #10: Simplif	y algebraic expressions.	
✔ Solved Problem #10	🔪 Pencil Problem #10 🎢	
10. Simplify: $6+4[7-(x-2)]$.	10. Simplify: $7 - 4[3 - (4y - 5)]$.	
6 + 4[7 - (x - 2)] = 6 + 4[7 - x + 2] = 6 + 4[9 - x] = 6 + 36 - 4x = (6 + 36) - 4x = 42 - 4x		

Answers for Pencil Problems (Textbook Exercise references in parentheses):

1. 44 (*P*.1 #9) **2.** \$30,568 (*P*.1 #131c) **3.** {2, 4} (*P*.1 #21) **4.** {1, 2, 3, 4, 5} (*P*.1 #29) **5.** a. $\sqrt{64}$ b. -11, $-\frac{5}{6}$, 0, 0.75, $\sqrt{64}$ (*P*.1 #37) **6.** a. true b. false **7.** a. $12 - \pi$ (*P*.1 #53) b. $5 - \sqrt{2}$ (*P*.1 #55) c. -1 (*P*.1 #57) **8.** 15 (*P*.1 #71) **9.** a. associative property of addition (*P*.1 #77) b. distributive property (*P*.1 #81) **10.** 16y - 25 (*P*.1 #93)

WOW, THAT'S BIG!

Did you know that in the summer of 2012 the national debt passed \$16,000,000,000,000 or \$16 trillion? Yes, that's 12 zeros you count. In this section, you will express the national debt in a form called *scientific notation* and use this form to calculate your share of the debt.

Objective #1: Use the product rule.			
✓ Solved Problem #1	N Pencil Problem #1		
1. Multiply using the product rule.	1. Multiply using the product rule.		
1a. $3^3 \cdot 3^2$	1a. $x^3 \cdot x^7$		
$3^3 \cdot 3^2 = 3^{3+2} = 3^5$ or 243			
1b. $(4x^3y^4)(10x^2y^6)$	1b. $(-9x^3y)(-2x^6y^4)$		
$(4x^3y^4)(10x^2y^6) = 4 \cdot 10 \cdot x^{3+2} \cdot y^{4+6} = 40x^5y^{10}$			
<i>Objective #2:</i> Use the quotient rule.			
✔ Solved Problem #2	🌂 Pencil Problem #2 🖉		
2. Divide using the quotient rule.	2. Divide using the quotient rule.		
2a. $\frac{(-3)^6}{(-3)^3}$	2a. $\frac{2^8}{2^4}$		
$\frac{(-3)^6}{(-3)^3} = (-3)^{6-3} = (-3)^3 \text{ or } -27$			
2b. $\frac{27x^{14}y^8}{3x^3y^5}$	2b. $\frac{25a^{13}b^4}{-5a^2b^3}$		
$\frac{27x^{14}y^8}{3x^3y^5} = \frac{27}{3} \cdot x^{14-3} \cdot y^{8-5} = 9x^{11}y^3$			

Objective #3: Use the zero-exponent rule.			
✓ Solved Problem #3	Nencil Problem #3		
3. Evaluate -8° .	3. Evaluate $(-3)^0$.		
Because there are no parentheses only 8 is raised to the 0 power. $-8^0 = -(8^0) = -1$			
Objective #4: Use the	negative-exponent rule.		
Solved Problem #4	Nencil Problem #4		
4. Write with a positive exponent. Simplify, if possible.	4. Write with a positive exponent. Simplify, if possible.		
4a. 5 ⁻²	4a. 4^{-3}		
$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$			
4b. $3x^{-6}y^4$ $3x^{-6}y^4 = 3 \cdot \frac{1}{x^6} \cdot y^4 = \frac{3y^4}{x^6}$	4b. $(4x^3)^{-2}$		
	se the power rule.		
 Solved Problem #5 Simplify using the power rule 	S Simplify using the power rule		
- co ³ ²	5. Shipiriy using the power rule.		
5a. $(3^3)^2$ $(3^3)^2 = 3^{32} = 3^6$ or 729	5a. $(2^2)^3$		

8b. $(-6x^2y^5)(3xy^3)$ $(-6x^2y^5)(3xy^3) = (-6)(3)x^2xy^5y^3$ $= -18x^{2+1}y^{5+3}$ $= -18x^3y^8$	8b. $(3x^4)(2x^7)$
8c. $\frac{100x^{12}y^2}{20x^{16}y^{-4}}$ $\frac{100x^{12}y^2}{20x^{16}y^{-4}} = \left(\frac{100}{20}\right) \left(\frac{x^{12}}{x^{16}}\right) \left(\frac{y^2}{y^{-4}}\right)$ $= 5x^{12-16}y^{2-(-4)}$ $= 5x^{-4}y^6$ $= \frac{5y^6}{x^4}$	8c. $\frac{24x^3y^5}{32x^7y^{-9}}$
8d. $\left(\frac{5x}{y^4}\right)^{-2} = \frac{(5x)^{-2}}{(y^4)^{-2}}$ = $\frac{5^{-2}x^{-2}}{y^{-6}}$ = $\frac{y^6}{5^2x^2}$ = $\frac{y^6}{25x^2}$	8d. $\left(\frac{5x^3}{y}\right)^{-2}$

Objective #9: Use scientific notation.			
Solved Problem #9	Nencil Problem #9		
9. In 9a and 9b, write each number in decimal notation.	9. In 9a and 9b, write each number in decimal notation.		
9a. -2.6×10^9	9a. -7.16×10^6		
Move the decimal point 9 places to the right. $-2.6 \times 10^9 = -2,600,000,000$			
9b. 3.017×10^{-6}	9b. 7.9×10^{-1}		
Move the decimal point 6 places to the left. $3.017 \times 10^{-6} = 0.000003017$			
9c. In 9c and 9d, write each number in scientific notation.	9c. In 9c and 9d, write each number in scientific notation.		
5,210,000,000	32,000		
The decimal point needs to be moved 9 places to the left. 5,210,000,000 = 5.21×10^9			
9d. -0.00000006893	9b. -0.0000000504		
The decimal point needs to be moved 8 places to the right. $-0.0000006893 = -6.893 \times 10^{-8}$			

9e. In 9e and 9f, perform the indicated computations. Write the answers in scientific notation.	9e. In 9e and 9f, perform the indicated computations. Write the answers in scientific notation.
$(7.1 \times 10^{5})(5 \times 10^{-7})$ $(7.1 \times 10^{5})(5 \times 10^{-7}) = (7.1 \times 5) \times 10^{5+(-7)}$ $= 35.5 \times 10^{-2}$ $= (3.55 \times 10^{1}) \times 10^{-2}$ $= 3.55 \times 10^{-1}$	(1.6×10 ¹⁵)(4×10 ⁻¹¹)
9f. $\frac{1.2 \times 10^{6}}{3 \times 10^{-3}}$ $\frac{1.2 \times 10^{6}}{3 \times 10^{-3}} = \frac{1.2}{3} \times 10^{6-(-3)}$ $= 0.4 \times 10^{9}$ $= (4 \times 10^{-1}) \times 10^{9}$ $= 4 \times 10^{8}$	9f. $\frac{2.4 \times 10^{-2}}{4.8 \times 10^{-6}}$

I

Answers for Pencil Problems (Textbook Exercise references in parentheses):1a. x^{10} (P.2 #27)1b. $18x^9y^5$ (P.2 #47)2a. 16 (P.2 #17)2b. $-5a^{11}b$ (P.2 #51)3. 1 (P.2 #7)4a. $\frac{1}{64}$ (P.2 #11)4b. $\frac{1}{16x^6}$ (P.2 #55)5a. 64 (P.2 #15)5b. $\frac{1}{x^{15}}$ (P.2 #33)6. $64x^6$ (P.2 #39)7. $-\frac{64}{x^3}$ (P.2 #41)8a. $9x^4y^{10}$ (P.2 #43)8b. $6x^{11}$ (P.2 #45)8c. $\frac{3y^{14}}{4x^4}$ (P.2 #57)8d. $\frac{y^2}{25x^6}$ (P.2 #59)9a. -7,160,000 (P.2 #69)9b. 0.79 (P.2 #71)9c. 3.2×10^4 (P.2 #77)9d. -5.04×10^{-9} (P.2 #85)9e. 6.4×10^4 (P.2 #89)9f. 5×10^3 (P.2 #101)

Copyright © 2014 Pearson Education Inc.

Section P.3 Radicals and Rational Exponents

Radicals in Space?

What does space travel have to do with radicals?

Imagine that in the future we will be able to travel at velocities approaching the speed of light

(approximately 186,000 miles per second). According to Einstein's theory of special relativity, time would pass more quickly on Earth than it would in the moving spaceship.

Objective #8: Understand and use rational exponents	
Solved Problem #8	Pencil Problem #8
8a. Simplify $(-8)^{\frac{1}{3}}$.	8a. Simplify $36^{\frac{1}{2}}$.
$(-8)^{\frac{1}{3}} = \sqrt[3]{-8} = -2$	
8b. Simplify $32^{-\frac{2}{5}}$.	8b. Simplify $125^{\frac{2}{3}}$.
$32^{-\frac{2}{5}} = \frac{1}{32^{\frac{2}{5}}} = \frac{1}{(\sqrt[5]{32})^2} = \frac{1}{2^2} = \frac{1}{4}$	
8c. Simplify $\frac{20x^4}{5x^{\frac{3}{2}}}$.	8c. Simplify $(7x^{\frac{1}{3}})(2x^{\frac{1}{4}})$.
$\frac{20x^4}{5x^{\frac{3}{2}}} = \frac{20}{5} \cdot x^{4-\frac{3}{2}} = 4x^{\frac{8}{2}-\frac{3}{2}} = 4x^{\frac{5}{2}}$	
8d. Simplify $\sqrt[6]{x^3}$.	8d. Simplify $\sqrt[6]{x^4}$.
$\sqrt[6]{x^3} = x^{\frac{3}{6}} = x^{\frac{1}{2}} = \sqrt{x}$	

Answers for Pencil Problems (*Textbook Exercise references in parentheses*): 1a. 6 (*P*.3 #1) 1b. -6 (*P*.3 #3) 1c. $\frac{1}{9}$ (*P*.3 #23) 1d. 3 (*P*.3 #7) 1e. 1 (*P*.3 #9) 2. 13 (*P*.3 #11) 3a. $5\sqrt{2}$ (*P*.3 #13) 3b. $2x\sqrt{3}$ (*P*.3 #17) 4a. $\frac{7}{4}$ (*P*.3 #23) 4b. 4x (*P*.3 #27) 5a. $-2\sqrt{17x}$ (*P*.3 #35) 5b. $34\sqrt{2}$ (*P*.3 #41) 6a. $\frac{\sqrt{10}}{5}$ (*P*.3 #47) 6b. $7(\sqrt{5}+2)$ (*P*.3 #51) 7a. $3\sqrt[3]{2}$ (*P*.3 #71) 7b. 2x (*P*.3 #73) 7c. $13\sqrt[3]{2}$ (*P*.3 #77) 8a. 6 (*P*.3 #83) 8b. 25 (*P*.3 #87) 8c. $14x^{\frac{7}{12}}$ (*P*.3 #91) 8d. $\sqrt[3]{x^2}$ (*P*.3 #105)

Copyright © 2014 Pearson Education Inc.

What Are the Best Dimensions for a Box?

Many children get excited about gift boxes of all shapes and sizes, with the possible *exception* of clothing-sized boxes. (I must confess I dreaded boxes of that size.)

While completing the application exercises in this section of the textbook, we will use polynomials to model the dimensions of a box. We will then apply the concepts of this section to model the area of the box's base and its volume.

Objective #1: Understand the vocabulary of polynomials.		
✓ Solved Problem #1	🔌 Pencil Problem #1 🎢	
1. True or false: $7x^5 - 3x^3 + 8$ is a polynomial of degree 7 with three terms.	1. True or false: $x^2 - 4x^3 + 9x - 12x^4 + 63$ is a polynomial of degree 2 with five terms.	
False. The expression $7x^5 - 3x^3 + 8$ is a polynomial with three terms, but its degree is 5, not 7.		
Objective #2: Add and	l subtract polynomials.	
	<u> </u>	
Solved Problem #2	Pencil Problem #2	
Solved Problem #2 2a. Add: $(-17x^3 + 4x^2 - 11x - 5) + (16x^3 - 3x^2 + 3x - 15).$	Pencil Problem #2 2a. Add: $(-6x^3 + 5x^2 - 8x + 9) + (17x^3 + 2x^2 - 4x - 13).$	
Solved Problem #2 2a. Add: $(-17x^3 + 4x^2 - 11x - 5) + (16x^3 - 3x^2 + 3x - 15).$ $(-17x^3 + 4x^2 - 11x - 5) + (16x^3 - 3x^2 + 3x - 15)$ $= (-17x^3 + 16x^3) + (4x^2 - 3x^2) + (-11x + 3x) + (-5 - 15)$ $= -x^3 + x^2 + (-8x) + (-20)$ $= -x^3 + x^2 - 8x - 20$	Pencil Problem #2 2a. Add: $(-6x^3 + 5x^2 - 8x + 9) + (17x^3 + 2x^2 - 4x - 13)$.	

2b. Subtract: $(13x^{3} - 9x^{2} - 7x + 1) - (-7x^{3} + 2x^{2} - 5x + 9).$ $(13x^{3} - 9x^{2} - 7x + 1) - (-7x^{3} + 2x^{2} - 5x + 9)$ $= (13x^{3} - 9x^{2} - 7x + 1) + (7x^{3} - 2x^{2} + 5x - 9)$ $= (13x^{3} + 7x^{3}) + (-9x^{2} - 2x^{2}) + (-7x + 5x) + (1 - 9)$ $= 20x^{3} + (-11x^{2}) + (-2x) + (-8)$ $= 20x^{3} - 11x^{2} - 2x - 8$	2b. Subtract: $(17x^3 - 5x^2 + 4x - 3) - (5x^3 - 9x^2 - 8x + 11).$
Objective #3: Mu	ltiply polynomials.
✓ Solved Problem #3	📜 Pencil Problem #3
3. Multiply: $(5x-2)(3x^2-5x+4)$. $(5x-2)(3x^2-5x+4)$ $= 5x(3x^2-5x+4)-2(3x^2-5x+4)$ $= 5x \cdot 3x^2 + 5x(-5x) + 5x \cdot 4 - 2 \cdot 3x^2 - 2(-5x) - 2 \cdot 4$ $= 15x^3 - 25x^2 + 20x - 6x^2 + 10x - 8$ $= 15x^3 - 31x^2 + 30x - 8$	3. Multiply: $(2x-3)(x^2-3x+5)$.
Objective #4: Use FOIL in	polynomial multiplication.
Solved Problem #4	Nencil Problem #4
4. Multiply: $(7x-3)(4x-3)$. Use FOIL. First: $7x \cdot 4x$ Outside: $7x(-3)$ Inside: $-5 \cdot 4x$ Last: $-5(-3)$ (7x-5)(4x-3) $= 7x \cdot 4x + 7x(-3) - 5 \cdot 4x - 5(-3)$ $= 28x^2 - 21x - 20x + 15$ $= 28x^2 - 41x + 15$	4. Multiply: $(5x+5)(2x+1)$.

Objective #5: Use special products in polynomial multiplication.	
✓ Solved Problem #5	Pencil Problem #5
5a. Multiply: $(7x+8)(7x-8)$.	5a. Multiply: $(5-7x)(5+7x)$.
Use $(A+B)(A-B) = A^2 - B^2$. $(7x+8)(7x-8) = (7x)^2 - 8^2$ $= 49x^2 - 64$	
5b. Multiply: $(5x+4)^2$. Use $(A+B)^2 = A^2 + 2AB + B^2$. $(5x+4)^2 = (5x)^2 + 2(5x)(4) + 4^2$ $= 25x^2 + 40x + 16$	5b. Multiply: $(2x+3)^2$.
5c. Multiply: $(x-9)^2$. Use $(A-B)^2 = A^2 - 2AB + B^2$. $(x-9)^2 = x^2 - 2 \cdot x \cdot 9 + 9^2$ $= x^2 - 18x + 81$	5c. Multiply: $(x-3)^2$.

Objective #6: Perform operations with polynomials in several variables.	
✔ Solved Problem #6	🕅 Pencil Problem #6 🖉
6a. Subtract: $(x^3 - 4x^2y + 5xy^2 - y^3) - (x^3 - 6x^2y + y^3).$	6a. Add: $(4x^2y + 8xy + 11) + (-2x^2y + 5xy + 2)$.
$(x^{3} - 4x^{2}y + 5xy^{2} - y^{3}) - (x^{3} - 6x^{2}y + y^{3})$ = $(x^{3} - 4x^{2}y + 5xy^{2} - y^{3}) + (-x^{3} + 6x^{2}y - y^{3})$ = $(x^{3} - x^{3}) + (-4x^{2}y + 6x^{2}y) + 5xy^{2} + (-y^{3} - y^{3})$ = $2x^{2}y + 5xy^{2} - 2y^{3}$	
6b. Multiply: $(7x-6y)(3x-y)$.	6b. Multiply: $(7x + 5y)^2$.
Use FOIL. (7x-6y)(3x-y) $= 7x \cdot 3x + 7x(-y) - 6y \cdot 3x - 6y(-y)$ $= 21x^2 - 7xy - 18xy + 6y^2$ $= 21x^2 - 25xy + 6y^2$	

Answers for Pencil Problems (Textbook Exercise references in parentheses):

1. False (P.4 #7) **2a.** $11x^3 + 7x^2 - 12x - 4$ (P.4 #9) **2b.** $12x^3 + 4x^2 + 12x - 14$ (P.4 #11)**3.** $2x^3 - 9x^2 + 19x - 15$ (P.4 #17) **4.** $6x^2 + 13x + 5$ (P.4 #23)**5a.** $25 - 49x^2$ (P.4 #35) **5b.** $4x^2 + 12x + 9$ (P.4 #43) **5c.** $x^2 - 6x + 9$ (P.4 #45)**6a.** $2x^2y + 13xy + 13$ (P.4 #61) **6b.** $49x^2 + 70xy + 25y^2$ (P.4 #73)

What's the sales price?

Many times retailers advertise their discounts in terms of percentages by which the price is reduced, such as 30% off. If a product still doesn't sell, the retailer may offer an additional 30% off the price that has already been reduced by 30%.

In this section's Exercise Set, you will see how the 30% discount followed by another 30% discount can be expressed as a polynomial. By factoring the polynomial and simplifying, you will see that our double discount means that we pay 49% of the original price.

Objective #1: Factor out the greatest common factor.		
✓ Solved Problem #1	Nencil Problem #1	
1a. Factor $10x^3 - 4x^2$.	1a. Factor $3x^2 + 6x$.	
2 is the greatest integer that divides 10 and 4. x^2 is the greatest expression that divides x^3 and x^2 . The GCF is $2x^2$. $10x^3 - 4x^2 = 2x^2(5x) - 2x^2(2)$ $= 2x^2(5x - 2)$		
1b. Factor $2x(x-7) + 3(x-7)$.	1b. Factor $x(x+5) + 3(x+5)$.	
The GCF is the binomial factor $(x - 7)$. 2x(x - 7) + 3(x - 7) = (x - 7)(2x + 3)		

Objective #2: Factor by grouping.	
Solved Problem #2	Pencil Problem #2.
2. Factor $x^3 + 5x^2 - 2x - 10$.	2. Factor $x^3 - 2x^2 + 5x - 10$.
The GCF of the first two terms is x^2 , and the GCF of the last two terms is -2. After factoring out these GCFs, factor out the common binomial factor.	
$x^3 + 5x^2 - 2x - 10 = (x^3 + 5x^2) + (-2x - 10)$	
$= x^2(x+5) - 2(x+5)$	
$=(x+5)(x^2-2)$	
Objective #3: Factor trinomials.	
✓ Solved Problem #3	Pencil Problem #3
Solved Problem #3 3a. Factor $x^2 - 5x - 14$.	Pencil Problem #3 \cancel{P} 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5 .	Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5 . -7(2) = -14 and $-7 + 2 = -5$	Pencil Problem #3 \cancel{P} 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.$	Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Solution Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Solution Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Bencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Pencil Problem #3 3a. Factor $x^2 - 8x + 15$.
Solved Problem #3 3a. Factor $x^2 - 5x - 14$. The leading coefficient is 1. We look for factors of -14 that sum to -5. -7(2) = -14 and $-7 + 2 = -5The numbers are -7 and 2.x^2 - 5x - 14 = (x - 7)(x + 2)$	Second control in the second

Objective #5: Factor perfect square trinomials.	
Solved Problem #5	Nencil Problem #5
5a. Factor $x^2 + 14x + 49$.	5a. Factor $x^2 + 2x + 1$.
Note that the first term is the square of x , the last term is the square of 7, and the middle term is twice the product of x and 7.	
Factor using $A^2 + 2AB + B^2 = (A + B)^2$.	
$x^2 + 14x + 49 = x^2 + 2 \cdot x \cdot 7 + 7^2$	
$=(x+7)^{2}$	
5b. Factor $16x^2 - 56x + 49$.	5b. Factor $9x^2 - 6x + 1$.
Note that the first term is the square of $4x$, the last term is the square of 7, and the middle term is twice the product of $4x$ and 7.	
Factor using $A^2 - 2AB + B^2 = (A - B)^2$.	
$16x^2 - 56x + 49 = (4x)^2 - 2 \cdot 4x \cdot 7 + 7^2$	
$=(4x-7)^{2}$	
Objective #6: Factor the sur	n or difference of two cubes.
Solved Problem #6	N Pencil Problem #6
6a. Factor $x^3 + 1$.	6a. Factor $x^3 + 27$.
Note that both terms can be expressed as cubes. Factor using $A^3 + B^3 = (A+B)(A^2 - AB + B^2)$.	
$x^3 + 1 = x^3 + 1^3$	
$=(x+1)(x^2-x\cdot 1+1^2)$	
$=(x+1)(x^2-x+1)$	

Note that the first term is the cube of $5x$ and the second term is the cube of 2.	
Factor using $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$. $125x^3 - 8 = (5x)^3 - 2^3$ $= (5x - 2)[(5x)^2 + 5x \cdot 2 + 2^2]$ $= (5x - 2)(25x^2 + 10x + 4)$	
Objective #7 . Use a general stra	ategy for factoring polynomials
✓ Solved Problem #7	Pencil Problem #7
7a. Factor $3x^3 - 30x^2 + 75x$.	7a. Factor $20y^4 - 45y^2$.
First, factor out the GCF, 3 <i>x</i> . $3x^3 - 30x^2 + 75x = 3x(x^2 - 10x + 25)$	
Now factor the trinomial. Find factors of 25 that sum to -10, or use the formula for a perfect square trinomial, $A^2 - 2AB + B^2 = (A - B)^2$.	
$3x^{3} - 30x^{2} + 75x = 3x(x^{2} - 10x + 25)$ = 3x(x^{2} - 2 \cdot x \cdot 5 + 5^{2}) = 3x(x - 5)^{2}	
7b. Factor $x^2 - 36a^2 + 20x + 100$.	7b. Factor $x^2 - 12x + 36 - 49y^2$.
Regroup factors and look for opportunities to factor within groupings. $x^2 - 36a^2 + 20x + 100 = (x^2 + 20x + 100) - 36a^2$	
Factor the expression in parentheses using $A^2 + 2AB + B^2 = (A + B)^2$.	
$(x^{2} + 20x + 100) - 36a^{2} = (x^{2} + 2 \cdot x \cdot 10 + 10^{2}) - 36a^{2}$ $= (x + 10)^{2} - 36a^{2}$	

6b. Factor $8x^3 - 1$.

6b. Factor $125x^3 - 8$.

This last form is the difference of squares. Factor using $A^2 - B^2 = (A+B)(A-B).$ $(x+10)^2 - 36a^2 = (x+10)^2 - (6a)^2$ = [(x+10)+6a][(x+10)-6a] = (x+10+6a)(x+10-6a)So, $x^2 - 36a^2 + 20x + 100 = (x+10+6a)(x+10-6a).$

Objective #8: Factor algebraic expressions containing fractional and negative exponents.

Solved Problem #8 8. Factor and simplify: $x(x-1)^{\frac{1}{2}} + (x-1)^{\frac{1}{2}}$. The GCF is (x-1) with the smaller exponent. Thus, the GCF is $(x-1)^{\frac{1}{2}}$. $x(x-1)^{\frac{1}{2}} + (x-1)^{\frac{1}{2}} = (x-1)^{\frac{1}{2}} \cdot x + (x-1)^{\frac{1}{2}} \cdot (x-1)$ $= (x-1)^{\frac{1}{2}} [x+(x-1)]$ $= (x-1)^{\frac{1}{2}} [2x-1]$ $= \frac{2x-1}{(x-1)^{1/2}}$

Answers for Pencil Problems (Textbook Exercise references in parentheses):

1a. 3x(x+2) (P.5 #3) **1b.** (x+5)(x+3) (P.5 #7) **2.** $(x-2)(x^2+5)$ (P.5 #11) **3a.** (x-5)(x-3) (P.5 #21) **3b.** (3x-2)(3x-1) (P.5 #31) **4.** (3x-5y)(3x+5y) (P.5 #43) **5a.** $(x+1)^2$ (P.5 #49) **5b.** $(3x-1)^2$ (P.5 #55) **6a.** $(x+3)(x^2-3x+9)$ (P.5 #57) **6b.** $(2x-1)(4x^2+2x+1)$ (P.5 #61) **7a.** $5y^2(2y+3)(2y-3)$ (P.5 #83) **7b.** (x-6+7y)(x-6-7y) (P.5 #85) **8.** $-(x+3)^{\frac{1}{2}}(x+2)$ (P.5 #97)

Section P.6 Rational Expressions

Objective #2: Simplify rational expressions.	
✓ Solved Problem #2	Nencil Problem #2
2a. Simplify $\frac{x^3 + 3x^2}{x + 3}$.	2a. Simplify $\frac{3x-9}{x^2-6x+9}$.
Note that $x \neq -3$ since -3 would make the denominator 0.	
Factor the numerator and divide out common factors.	
$\frac{x^3 + 3x^2}{x+3} = \frac{x^2(x+3)}{x+3} = \frac{x^2(x+3)}{x+3}$ $= x^2, \ x \neq -3$	
2b. Simplify $\frac{x^2 - 1}{x^2 + 2x + 1}$.	2b. Simplify $\frac{y^2 + 7y - 18}{y^2 - 3y + 2}$.
By factoring the denominator, $x^2 + 2x + 1 = (x+1)^2$, we see that $x \neq -1$.	
Factor the numerator and denominator and divide out common factors.	
$\frac{x^2 - 1}{x^2 + 2x + 1} = \frac{(x+1)(x-1)}{(x+1)(x+1)} = \frac{(x+1)(x-1)}{(x+1)(x+1)}$	
$=\frac{1}{x+1}, x \neq -1$	
<i>Objective #3:</i> Multiply rational expressions.	
✓ Solved Problem #3	Nencil Problem #3
3. Multiply: $\frac{x+3}{x^2-4} \cdot \frac{x^2-x-6}{x^2+6x+9}$.	3. Multiply: $\frac{x^2 - 5x + 6}{x^2 - 2x - 3} \cdot \frac{x^2 - 1}{x^2 - 4}$.

Factor and divide by common factors.

$$\frac{x+3}{x^2-4} \cdot \frac{x^2-x-6}{x^2+6x+9} = \frac{x+3}{(x+2)(x-2)} \cdot \frac{(x-3)(x+2)}{(x+3)(x+3)}$$
$$= \frac{x+3}{(x+2)(x-2)} \cdot \frac{(x-3)(x+2)}{(x+3)(x+3)}$$
$$= \frac{x-3}{(x-2)(x+3)}, \ x \neq -3, -2, 2$$

To see which values must be excluded from the domain, look at the factored forms of the denominators in the second step.

$$\frac{(b) \text{ jective #4: Divide rational expressions.}}{(b) \text{ solved Problem #4}}$$
4. Divide: $\frac{x^2 - 2x + 1}{x^3 + x} + \frac{x^2 + x - 2}{3x^2 + 3}$.
Invert the divisor and multiply.
 $\frac{x^2 - 2x + 1}{x^3 + x} + \frac{x^2 + x - 2}{3x^2 + 3} = \frac{x^2 - 2x + 1}{x^3 + x} + \frac{3x^2 + 3}{x^2 + x - 2}$
 $= \frac{(x - 1)(x - 1)}{x(x^2 + 2)}, \quad x \neq -2, 0, 1$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x \neq -2, 0, 1$$

$$\frac{(x - 1)}{x(x + 2)}, \quad x$$

 $= -2, x \neq -1$

5b. Add: $\frac{3}{x+1} + \frac{5}{x-1}$. The denominators are not equal and have no common factor. Use the property $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$. $\frac{3}{x+1} + \frac{5}{x-1} = \frac{3(x-1)+5(x+1)}{(x+1)(x-1)}$ $= \frac{3x-3+5x+5}{(x+1)(x-1)}$ $= \frac{8x+2}{(x+1)(x-1)}$ $= \frac{2(4x+1)}{(x+1)(x-1)}, x \neq -1, 1$	5b. Add: $\frac{3}{x+4} + \frac{6}{x+5}$.
5c. Subtract: $\frac{x}{x^2 - 10x + 25} - \frac{x - 4}{2x - 10}$.	5c. Subtract: $\frac{3x}{x^2 + 3x - 10} - \frac{2x}{x^2 + x - 6}$.
Factor the denominators. $x^{2} - 10x + 25 = (x - 5)(x - 5)$ $2x - 10 = 2(x - 5)$ LCD = $2(x - 5)(x - 5)$ $\frac{x}{x^{2} - 10x + 25} - \frac{x - 4}{2x - 10}$ $= \frac{x}{(x - 5)(x - 5)} - \frac{x - 4}{2(x - 5)}$ $= \frac{2x}{2(x - 5)(x - 5)} - \frac{(x - 4)(x - 5)}{2(x - 5)(x - 5)}$ $= \frac{2x - (x - 4)(x - 5)}{2(x - 5)^{2}}$ $= \frac{2x - (x^{2} - 9x + 20)}{2(x - 5)^{2}}$ $= \frac{2x - x^{2} + 9x - 20}{2(x - 5)^{2}}$ $= \frac{-x^{2} + 11x - 20}{2(x - 5)^{2}}, x \neq 5$	

 $=\frac{-1}{x(x+7)}, x \neq -7,0$

Answers for Pencil Problems (Textbook Exercise references in parentheses):

1a. 3 (*P.6 #1*) **1b.** -5, 5 (*P.6 #3*) **2a.**
$$\frac{3}{x-3}$$
, $x \neq 3$ (*P.6 #7*) **2b.** $\frac{y+9}{y-1}$, $y \neq 1,2$ (*P.6 #11*)
3. $\frac{x-1}{x+2}$, $x \neq -2, -1, 2, 3$ (*P.6 #19*) **4.** $\frac{x-5}{2}$, $x \neq -5, 1$ (*P.6 #29*)
5a. 2, $x \neq -\frac{5}{6}$ (*P.6 #33*) **5b.** $\frac{9x+39}{(x+4)(x+5)}$, $x \neq -5, -4$ (*P.6 #41*)
5c. $\frac{x^2-x}{(x+5)(x-2)(x+3)}$, $x \neq -5, -3, 2$ (*P.6 #53*)
6a. $\frac{x+1}{3x-1}$, $x \neq 0, \frac{1}{3}$ (*P.6 #61*) **6b.** $-\frac{x-14}{7}$, $x \neq -2, 2$ (*P.6 #67*)